

AVERAGING FACIAL IMAGES

Alexei Zhurov

Cardiff University, School of Dentistry

Average Face in Three Dimensions

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK • 12 November 2010

Image acquisition

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK • 12 November 2010

Image acquisition

coleg meddygaeth

CARDIFF
UNIVERSITY
PRIFYSGOL CAERDYB
coleg meddygaeth
E
college of medicin

© RapidForm2004 SP3.0

File Select Edit Tool Clean Measure Information Ref. Geometry User Tools View Macro Help

$\square \rightarrow \mathrm{mm}, \mathrm{deg}$

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK•12 November 2010

CARDIFF
UNIVERSTTY
prifyscol
CAERDY
Resulting image
$\sum_{\frac{1}{5}}$
Colllege of mediciné

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK • 12 November 2010

Averaging is one dimension

- One-dimensional data \rightarrow Arithmetic mean

$$
x_{\mathrm{ave}}=\frac{x_{1}+\cdots+x_{N}}{N}
$$

- Curves aligned

$$
f_{\text {ave }}(x)=\frac{f_{1}(x)+\cdots+f_{N}(x)}{N}, \quad a \leq x \leq b
$$

Averaging in two dimensions

- Curves unaligned

- Averaging in vertical direction

- Intuitively this is not right

- Averaging should be made in radial direction

- More generally, averaging should be made in normal direction

Example: Averaging of semicircles

- How to average if the figures are unaligned?

- Align them first by removing translation and rotation

Objects must be aligned

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK • 12 November 2010

Objects should have same size

Unscaled and unaligned

Scaled and aligned

What is 3D averaging?

3D facial average is a face that:

- Has average size
- Has average shape

Averaging involves:

- Removal of translation
- Removal of rotation
- Removal of size differences
- Averaging method

Problem:

- How to do all of these?

Facial landmarks

Landmarks

- Glabella (g)
- Nasion (n)
- Endocanthion (en) L/R
- Exocanthion (ex) L/R
- Palpebrale superius (ps) L/R
- Palpebrale inferius (pi) L/R
- Pronasale (prn)
- Subnasale (sn)
- Alare (al) L/R
- Labiale superius (ls)
- Labiale inferius (li)
- Crista philtri (cph) L/R
- Cheilion (ch) L/R
- Pogonion (pg)

Choosing the origin

coleg meddygaeth
景

	Initial data, best-fit registration				GPA registration with scaling				GPA registration without scaling			
	X	Y	Z	Dist	X	Y	Z	Dist	X	Y	Z	Dist
g	1.177	3.164	1.811	3.831	0.562	1.827	1.899	2.695	0.560	2.540	1.921	3.234
n	1.015	2.749	2.151	3.635	0.508	1.761	1.707	2.505	0.506	2.439	1.717	3.025
enL	1.617	2.767	2.686	4.181	1.329	1.075	1.468	2.253	1.415	1.725	1.664	2.783
enR	1.616	2.786	2.430	4.035	1.308	1.089	1.334	2.162	1.411	1.770	1.524	2.728
exL	2.229	3.103	3.066	4.899	2.107	1.481	1.493	2.977	2.064	1.853	1.813	3.314
exR	2.331	3.029	2.619	4.633	2.141	1.486	1.407	2.962	2.204	1.982	1.722	3.428
psL	1.900	3.063	2.390	4.325	1.597	1.346	1.452	2.544	1.622	1.916	1.615	2.985
psR	1.912	3.021	2.145	4.169	1.541	1.321	1.509	2.529	1.607	1.972	1.659	3.037
piL	1.809	2.940	2.751	4.414	1.645	1.259	1.447	2.527	1.634	1.787	1.651	2.931
piR	1.831	2.912	2.492	4.247	1.552	1.232	1.498	2.484	1.640	1.827	1.669	2.969
prn	1.122	3.167	3.330	4.730	0.905	2.062	2.300	3.219	0.903	2.064	2.627	3.460
sn	0.895	3.134	2.917	4.374	0.580	1.657	1.775	2.496	0.579	1.736	1.942	2.669
all	1.404	2.766	2.723	4.128	1.237	1.263	1.641	2.412	1.407	1.304	1.707	2.568
alR	1.501	2.664	2.674	4.062	1.286	1.280	1.781	2.542	1.455	1.307	1.884	2.716
Is	1.125	3.423	2.654	4.475	0.448	1.127	1.267	1.754	0.447	1.776	1.569	2.411
li	1.298	4.497	2.584	5.346	0.454	1.837	1.578	2.464	0.454	2.974	1.668	3.440
cphL	1.318	3.363	2.544	4.418	0.894	1.095	1.096	1.789	0.932	1.655	1.370	2.341
cphR	1.363	3.304	2.521	4.374	0.889	1.061	1.130	1.787	0.894	1.620	1.445	2.347
chL	2.165	3.608	3.063	5.205	1.991	1.380	1.841	3.043	2.007	2.169	1.841	3.482
chR	2.332	3.669	2.713	5.125	2.099	1.357	1.768	3.062	2.166	2.215	1.782	3.574
pg	1.679	5.553	2.698	6.398	0.819	2.502	2.925	3.935	0.820	4.364	2.822	5.261
men	0.925	2.725	2.477	3.797	0.485	1.011	1.291	1.710	0.487	1.704	1.498	2.321
mex	0.995	2.824	2.672	4.013	0.570	1.314	1.299	1.934	0.575	1.790	1.647	2.500
menex	0.900	2.677	2.403	3.708	0.409	0.919	0.910	1.357	0.410	1.589	1.273	2.077

Most stable point

E

- The most stable point in the area around the eyes is mid-endocanthion
- It is logical to take it as the origin

Introduction of reference planes

- In human body anatomy three planes are introduced
- Sagittal plane (also known as median or mid-sagittal plane)
- Coronal plane (frontal plane)
- Transverse plane (horizontal plane)
- Similar planes may be used for the face as well

Sagittal plane

- Sagittal plane = symmetry plane
- What is the symmetry plane in the face?
- All faces are asymmetric!

Defining reference frame

college of medicine

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK•12 November 2010

Facial size

coleg meddygaeth
college of medicine

PC1

Method of averaging

college of medicine

Unaligned

Aligned on mid-endocanthion

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK•12 November 2010

Facial averaging

| | A | B | C | D |
| ---: | :--- | ---: | ---: | ---: | ---: |
| 1 | Shell name | PC1 size | Rel size | Inv rel size |
| 2 | SMC-013-T4-B0B1 | 69.137 | 0.9902 | 1.0099 |
| 3 | SMC-014-T4-B0B1 | 68.646 | 0.9831 | 1.0171 |
| 4 | SMC-017-T4-B0B1 | 78.350 | 1.1221 | 0.8912 |
| 5 | SMC-024-T4A | 68.028 | 0.9743 | 1.0264 |
| 6 | SMC-027-T4-B0B1 | 68.663 | 0.9834 | 1.0169 |
| 7 | SMC-028-T4-B0B1 | 72.349 | 1.0362 | 0.9651 |
| 8 | SMC-030-T4-B0B1 | 65.853 | 0.9431 | 1.0603 |
| 9 | SMC-035-T4A | 66.696 | 0.9552 | 1.0469 |
| 10 | SMC-040-T4A | 71.135 | 1.0188 | 0.9816 |
| 11 | SMC-041-T4-B0B1 | 69.371 | 0.9935 | 1.0065 |
| 12 | Mean | $\mathbf{6 9 . 8 2 3}$ | $\mathbf{1 . 0 0 0 0}$ | $\mathbf{1 . 0 0 0 0}$ |
| | | | | |

Face sizes: PC1

Aligned and scaled

Scaled vs unscaled average

Unscaled average

Scaled average

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK • 12 November 2010

Scaled vs unscaled average

college of medicine

3D Users Group Meeting • Orthodontics and Related Disciplines • Cardiff, UK • 12 November 2010

Convergence of averaging iterations

Acknowledgements

- Stephen Richmond

Professor of Orthodontics, Head of Department Cardiff University, School of Dentistry

- Arshed Toma

PhD student in orthodontics
Cardiff University, School of Dentistry

- John Middleton

Professor of Biomechanics, Head of Centre
Cardiff University, School of Dentistry

THANK YOU

